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ABSTRACT

We derive new bounds for the condition number of kernel matrices, which we then use to enhance
existing non-asymptotic test error bounds for kernel ridgeless regression in the over-parameterized
regime for a fixed input dimension. For kernels with polynomial spectral decay, we recover the bound
from previous work; for exponential decay, our bound is non-trivial and novel.
Our conclusion on overfitting is two-fold: (i) kernel regressors whose eigenspectrum decays poly-
nomially must generalize well, even in the presence of noisy labeled training data; these models
exhibit so-called tempered overfitting; (ii) if the eigenspectrum of any kernel ridge regressor decays
exponentially, then it generalizes poorly, i.e., it exhibits catastrophic overfitting. This adds to the
available characterization of kernel ridge regressors exhibiting benign overfitting as the extremal case
where the eigenspectrum of the kernel decays sub-polynomially. Our analysis combines new random
matrix theory (RMT) techniques with recent tools in the kernel ridge regression (KRR) literature.

1 Introduction

Kernel regression plays a pivotal role in machine learning since it offers an expressive and rapidly trainable framework
for modeling complex relationships in data. In recent years, kernels have regained significance in deep learning theory
since many deep neural networks (DNNs) can be understood as converging to certain kernel limits.

Its significance has been underscored by its ability to approximate deep neural network (DNN) training under certain
conditions, providing a tractable avenue for analytical exploration of test error and robust theoretical guarantees Jacot
et al. [2018], Arora et al. [2019], Bordelon et al. [2020]. The adaptability of kernel regression positions it as a crucial tool
in various machine learning applications, making it imperative to comprehensively understand its behavior, particularly
concerning overfitting.

Despite the increasing attention directed towards kernel ridge regression, the existing literature predominantly con-
centrates on overfitting phenomena in either the high input dimensional regime or the asymptotic regime Liang and
Rakhlin [2020], Mei and Montanari [2022], Misiakiewicz [2022], also known as the ultra-high dimensional regime
Zou and Zhang [2009], Fan et al. [2009]. Notably, the focus on asymptotic bounds, requiring the input dimension to
approach infinity, may not align with the finite nature of real-world datasets and target functions. Similarly, classical
Rademacher-based bounds, e.g. Bartlett and Mendelson [2002], require that the weights of the kernel regressor sat-
isfy data-independent a-priori bounds, a restriction that is also not implemented in standard kernel ridge regression
algorithms. These mismatches between idealized mathematical assumptions and practical implementation standards
necessitate a more nuanced exploration of overfitting in kernel regression in a fixed input dimension.
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Figure 1: Kernel spectra for Laplacian and Gaussian kernels and their overfitting behaviours.
Tempered Overfitting: The empirical kernel spectra of the Laplacian kernel decay moderately (top left), and so does
the quality of its test-set performance as one departs from the training data (top right).
Catastrophic Overfitting: The Gaussian kernel exhibits rapid spectral decay (bottom left), and so does the reliability
of its test-set performance for inputs far from the training data (bottom right).

Contributions This work aims at developing novel test error bounds for KRR in the setting of finite input dimension
and sample size.

As a summary, our main contributions are:

1. We obtain a high-probability bound on the condition number of the empirical kernel matrix (Theorem 4.1);
2. We derive tight non-asymptotic upper and lower bounds for the test error of the minimum norm interpolant

with polynomially decaying spectrum in the fixed input dimension setting. Consequentially, we show that this
regime yields tempered overfitting (Theorem 4.2);

3. On the other hand, we show that the minimum norm interpolant with exponentially decaying spectrum must
exhibit catastrophic overfitting (Theorem 4.3).

This mirrors the special case identified in Mallinar et al. [2022], which showed that the neural tangent kernel (NTK)
and Laplacian kernel (polynomial spectra) generalize well even without ridge while the Gaussian kernel (exponential
spectrum) does not. The correspondence between polynomial and exponential spectral decay rates and tempered and
catastrophic overfitting regimes is illustrated in Figure 1.

Organization of the Paper The structure of this paper is as follows:

1. In Section 2, we discuss how our work differs from previous studies and complements their results. A summary
for comparison can be found in Table 1.

2. In Section 3, we state the definitions and assumptions for this paper.
3. In Section 4, we present our main results (Theorems 4.1, 4.2, and 4.3) and interpret their significance, novelty,

and improvement compared to previous work. Based on our findings, we formulate a conjecture for future
research.
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4. In Section 5, we showcase the empirical results of a simple experiment to validate our findings.
5. In Section 6, we discuss the implications of our contributions in-depth, including their limitations and potential

directions for future research.
6. In Section A, we present the proof of our main results in a simpler setting (under Gaussian Design Assumption

A.1) for the sake of simplicity.
7. In Section B, we extend our proof to the general setting (under Sub-Gaussian Design Assumption 3.2).
8. In Section C, we list the technical lemmata used in this paper.

2 Previous Work

Traditional statistical wisdom has influenced classical machine learning models to focus on mitigating overfitting
with the belief that doing so maximizes the ability of a model to generalize beyond the training data. However, these
traditional ideas have been challenged by the discovery of the “benign overfitting” phenomenon, see e.g Liang and
Rakhlin [2020], Bartlett et al. [2020], Tsigler and Bartlett [2023], in the context of KRR. A key factor is that traditional
statistics operate in the under-parameterized setting where the number of training instances exceeds the number of
training instances. This assumption is rarely applicable to modern machine learning, where models depend on vastly
more parameters than their training instances, and thus, classical statistical thought no longer applies.

2.1 Gaussian Assumption

Many previous works Jacot et al. [2020], Bordelon et al. [2020], Simon et al. [2021] require the universality assumption
on the eigenfunctions evaluated on the training set, namely, the entries are i.i.d. Gaussians, to prove their results on
KRR generalization. (See Assumption A.1 in Section 3 for details.) In contrast, we obtain tight bounds on test error
in the more widely applicable sub-Gaussian setting. We note that for simplicity of exposition, we first showcase our
results under the Gaussian Design Assumption A.1 and, once explaining our proof strategy, we extend our argument to
the general sub-Gaussian setting in Section B.

2.2 Test Error on Ridgeless Regression

Many previous works Arora et al. [2019], Liang and Rakhlin [2020], Bordelon et al. [2020], Bartlett et al. [2020],
Simon et al. [2021], Mei et al. [2021], Misiakiewicz [2022], Bach [2023], Cheng et al. [2023] have devoted on bounding
the KRR test error in different settings. In the context of benign overfitting, a recent related paper Tsigler and Bartlett
[2023] gives tight non-asymptotic bounds on the ridgeless regression test error under the assumption that the condition
number of kernel matrix is bounded by some constant. Our random matrix theoretic arguments successfully allow
us to derive tight non-asymptotic bounds for the condition number of the empirical kernel matrix (see Theorem 4.1) and
to apply some of their technical tools without their stylized assumptions.

2.3 Overfitting

Recently, Mallinar et al. [2022] characterized previous results on overfitting, especially in the context of KRR, and
classified them into three categories 1) benign overfitting meaning that the learned model interpolates the noisy training
data while exhibiting a negligible reduction in test performance decline, 2) tempered overfitting, which happens when
the learned model exhibits a bounded reduction in test set performance due resulting from an interpolation of the
training data, and 3) catastrophic overfitting which covers the case where the test error is unbounded due to the learned
model having interpolated the training data. The benign overfitting case has already been characterized by Barzilai and
Shamir [2023], and we characterize the tempered and catastrophic overfitting cases.

They follow a similar approach by characterizing the overfitting by the kernel spectral decay. However, their analysis is
based on a proxy of the test error by Simon et al. [2021] where they use the Gaussian Design Assumption A.1. Our
paper recovers their result with Sub-Gaussian Design Assumption 3.2 instead. We refer the reader to Figure 2 for
visualization and Definition 3.9 for further details.

2.4 Comparison to Other Results

A comparison of our results to the state-of-the-art in the literature is detailed in Table 1. Our analysis yields tighter
bounds for the class of kernels to which our analysis applies than theirs, which is accomplished via tighter bounds
on the involved kernel eigenspectrum. Importantly, unlike their results, our analysis provides upper and matching
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Benign Decay Tempered Decay Catastrophic Decay

Figure 2: A cartoon description for benign, tempered and catastrophic overfitting regimes. We characterize the tempered
and catastrophic overfitting regimes, where the out-of-sample performance is controlled and uncontrollable, respectively.

lower bounds bounds on the test error. Also, our bound on the condition number of the kernel matrix is tight even for
exponential decay, while the bound in Barzilai and Shamir [2023] 1 becomes vacuous in that setting.

Though our analysis covers a mildly smaller class of kernels, we expect one could extend our arguments to cover the
broader class of kernels studied in their analysis.

Table 1: Comparison with prior works

Mallinar et al. [2022] Tsigler and Bartlett [2023] Barzilai and Shamir [2023] This paper

Assumption on kernel Gaussian feature Bound on condition number Kernel cont. and bdd. Sub-Gaussian feature
Non-asymptotic bounds × X X X

Overfitting for poly. decay X × X X

Overfitting for exp. decay X × × X

3 Setting

Given a kernel K with reproducing kernel Hilbert space (RKHS)H, we consider the kernel ridge regression (KRR)
problem:

min
f∈H

N∑
i=1

(f(xi)− yi)2 + λ‖f‖2H.

The solution f̂ to the KRR problem, called the kernel ridge regressor, is unique whenever λ > 0. For λ = 0 and
dim(H) > N , with minor abuse of notation, we write f̂ the norm-minimizing interpolant:

f̂ ∈ arg min
f(xi)=yi,∀i

‖f‖H.

Given a data-distribution µ on the input space X , we using the Mercer theorem we decompose:

K(x, x′) =

M∑
k=1

λkψk(x)ψk(x′),

where M ∈ N ∪ {∞} is the kernel rank, λk’s are the eigenvalues indexed in decreasing order with corresponding
eigenfunctions ψk’s. In the context of over-parametrized machine learning, we assume the kernel is of finite-rank M
and is much larger than the sample size N :
Assumption 3.1 (Interpolation). Assume M ∈ N and there exists an integer constant θ > 1 (to be determined) such
that M = θN . Also, we assume that λ = 0 and hence f̂ denotes the norm-minimizing interpolant.

1We note that this paper is in fact a concurrent work as it was published on arXiv just four weeks prior to the submission deadline
for ICML. The strength of Barzilai and Shamir [2023] is the general setting under which they perform their analysis. However, our
results can address the difficult case of exponential decay and the two works are in conclusion complementary of each other.
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Hence the (random) kernel matrix K = [K(xi, xj)]i,j can be written concisely in matrix form

K = Ψ>ΛΨ,

where Ψ = [ψk(xi)] ∈ RM×N is the design block. Next, we assume sub-Gaussianity of the eigenfunctions ψk’s, which
is very standard in KRR literature(to name a few, Liang and Rakhlin [2020], Bartlett et al. [2020], Bach [2023], Tsigler
and Bartlett [2023], Cheng et al. [2023]):
Assumption 3.2 (Sub-Gaussian Design). The sub-Gaussian norm of the random variables ψk(x)’s are uniformly
bounded.

We remark that Assumption 3.2 is much more general and realistic than the Gaussian Design Assumption A.1 which
the papers cited in Subsection 2.1 assumed.

However, for simplicity, we will first prove our result in Gaussian Assumption A.1 in Section A; then in Section B, we
will extend our proof to sub-Gaussian case accordingly.

In general, the random variables ψk(x)’s can be dependent to each other. For technical reasons, we require the
independence property in only some parts, but not all of our statements, which we will state clearly in Sections 4, A
and B. This is also quite common for KRR literature Liang and Rakhlin [2020], Bartlett et al. [2020], Bordelon et al.
[2020], Simon et al. [2021], Mallinar et al. [2022], Bach [2023], Tsigler and Bartlett [2023].
Assumption 3.3 (Independent Features). The random variables ψk(x)’s are independent to each other.

By the Representer Theorem, we know that

f̂(x) = K>x (K + λNIN )−1y = K>x K−1y,

where Kx = {K(xi, x)}Ni=1 ∈ RN . The analysis on the test error inevitably converges to the analysis of the kernel
matrix K. The first analysis is the condition number of K given different decays. In this paper, we consider the two
types of decay:
Assumption 3.4 (Exponential Decay). Assume there exists constants r ≥ r > 0 and a > 0 such that re−ak ≤ λk ≤
re−ak for all k = 1, 2, ...,M .
Assumption 3.5 (Polynomial Decay). Assume there exists constants r ≥ r > 0 and a > 1 such that rk−a ≤ λk ≤
rk−a, ∀k = 1, ...,M .

Next, we bound the test error on regression task:
Assumption 3.6 (Proper Agnostic Learning). Let yi = f?(xi) + εi for all i = 1, ..., N , where f? ∈ H is the target
function and the noise εi’s are draws from a centered sub-Gaussian random variable ε with variance E

[
ε2
]

= σ2 > 0.
In other words, the target function decomposes as

f? =

M∑
k=1

γ∗k

(
ψk

λ
1/2
k

)
,

where γ∗k’s are real numbers satisfying
∑M
k=1(γ∗k)2 <∞. Under the Interpolation Assumption 3.1, M is finite and this

inequality must hold. However, if we consider a sequence of KRR task with growing kernel rank M and dataset N , this
inequality has to hold at the limit. In particular, if we write γ∗ = (γ∗k)Mk=1 ∈ RM , the RKHS norm of f∗ can be written
as ‖f∗‖2H = ‖γ∗‖22 and its L2 norm as ‖f∗‖L2

µ
= ‖γ∗‖2Λ, under the notation ‖v‖M =

√
v>Mv with vector v and

matrix M with conformable dimensions.

With abuse of notation, we write f∗(X) ∈ RN to be the evaluation of f∗ on the training set X = (xi)
N
i=1. We define the

test error (or excess risk) to be the mean square error (MSE) between the target function f? and the norm-minimizing
interpolant f̂ of a given fixed dataset of size N averaging out the noise in the dataset:

Definition 3.7 (Bias-Variance Decomposition of test error). Given the test errorR def.
= Ex,ε

[
(f?(x)− f̂(x))2

]
be the

test error. Define the bias
B def.

= Ex
[
(f?(x)−K>x K[f?(x)])2

]
,

which measures how accurately the KRR approximates the true target function f?. The variance, defined as the
difference

V = R− B,
quantifies the impact which overfitting to noise has on the test error.
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Next, we introduce some important quantities commonly defined in the KRR literature such as Tsigler and Bartlett
[2023], Barzilai and Shamir [2023], which also occur several times in our analysis:
Definition 3.8 ((Normalized) effective rank). Let λk’s be the eigenvalues of the kernel K indexed in decreasing order.
Define the lth- (normalized) effective rank to be

ρl
def.
=

∑
k>l λl

Nλl+1
. (1)

For l = 0, it is the same as the well-known effective rank of the covariance Λ. Also define

Rl
def.
=

(
∑
k>l λl)

2∑
k>l λ

2
l

. (2)

We define different overfitting regimes in the KRR context:

Definition 3.9 (Overfitting). Fix a spectrum λk’s and denote by ΛM
def.
= diag{λk}Mk=1, and fix features ψk’s.

Let M = θN and {ΨN}N∈N be a family of independently drawn datasets. This gives a reproducing kernel Hilbert
space (RKHS) corresponding to each kernel

KM
def.
= Ψ>MΛMΨM

indexed by M and letH be their limit.

For a target function f∗ ∈ H, write f∗M as its projection onto the subspaceHM . Hence
∑
k>M (γ∗k)2 → 0 as M →∞.

Write the test errorRN = RN (f∗M , ε) as a function of the target function f∗M ∈ HM and the noise random variable ε,
for each dataset size N and respective model size M = θN . Assume that the limit

L
def.
= max

f∗∈H
lim
N→∞

RN (3)

exists. We call the minimum norm interpolant of the random Gaussian Feature Model with spectral decay λk’s:

(i) a benign overfitting, when L = 0;

(ii) a tempered overfitting, when L ∈ (0,+∞);

(iii) a catastrophic overfitting, when L =∞,

which holds almost surely in terms of the randomness of the random features, input draw, and noise.

4 Main Result

Our main result consists of three stages. First, we bound the condition number of the kernel matrix K under Gaussian
Assumption A.1 or Sub-Gaussian Assumption 3.1 in Theorem 4.1. Next, we use this result to give an upper bound of
the test error in Theorem 4.2. Lastly, we give a matching lower bound of the test error in Theorems 4.2 and 4.3 and
conclude the effect of the spectral decay on overfitting.

4.1 Condition Number

Theorem 4.1 (Approximation on the Condition Number). Suppose Assumptions 3.1 and 3.2 hold.

1. Exponential Decay If Assumptions 3.3 and 3.4 hold, then with high probability, the condition number of the
kernel matrix K is

smax(K)

smin(K)
� λ1
λN

N.

2. Polynomial Decay: If Assumption 3.5 holds. Then, with high probability, the condition number of the kernel
matrix K is

smax(K)

smin(K)
� λ1
λN

.

6
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Proof Idea: The first part of Theorem 4.1, showing smax(K) � Nλ1, is rather easy for both decays and has been
discussed intensively in the past literature Vershynin [2010], Koltchinskii and Lounici [2017], Zhivotovskiy [2021]. For
the sake of completeness, we include a proof for our scenario in Lemma A.2 for the Gaussian case and Lemmata B.2
and B.1 for the sub-Gaussian case. The second part of Theorem 4.1, to derive the upper bound of smin(K), this too is
not difficult and it is shown in Lemma A.6 for the Gaussian case and Lemma B.3 for the sub-Gaussian case.

The difficulty lies in the third part of Theorem 4.1; namely, in deriving a tight lower bound of smax(K). For exponential
decay, we have λN & λN in Lemma A.3 for the Gaussian case and Lemma B.5 for the sub-Gaussian case using a
technique from Tao [2012]. In the case of a polynomial decay, we have λN & NλN in Lemma A.5 for the Gaussian
case and Lemma B.4 using RMT results from Rudelson and Vershynin [2008], Vershynin [2010]. The formulation of
the above theorem with its proof can be found in Theorem A.7 in the appendix. �

Remarkably, we uncover a novel qualitative difference of smin(K) between exponential and polynomial decays. Let us
compare with [Barzilai and Shamir, 2023, Theorem 1], wherein the authors obtain a lower bound of smin(K) which
holds with high probability:

smin(K) ≥ Nαk

1− 1

δ

√
N2

Rk

∑l>k λl

N
, (4)

for any integer k ≤ N , and some constants αk > 0 and δ ∈ (0, 1), and Rk =
(
∑
k>l λl)

2∑
k>l λ

2
l

as in Definition 3.8. When the

eigenvalues λk’s are exponential, then Rk becomes a constant independent to k and N . Hence the factor
(

1− 1
δ

√
N2

Rk

)
becomes negative as N →∞ and the lower bound in line (4) becomes trivial.

In contrast, our lower bound on smin(K) & λN , in the exponential decay case, matches its upper bound and is much
more accurate than the primitive bound:

smin(K) ≥ smin(Ψ>NΛNΨN )

≥ λNsmin(Ψ>NΨN )

= λNsmin(ΨN )2

& λN (N−1/2)2 (5)
≥ λN/N,

where in line (5) holds with high probability by Theorem C.10 under the independent features Assumption 3.3.

4.2 Classifying Overfitting Regimes

The result on the condition number of the kernel matrix can be applied to deduce the tempered overfitting phenomenon
Mallinar et al. [2022] in kernel interpolation:
Theorem 4.2 (Tempered Overfitting for Kernels with Polynomial Decaying Spectrum). Suppose Assumptions 3.1, 3.2,
3.3, 3.5, 3.6 hold. Then there exists constants c1, c2, c3, c4, c5, c6 > 0 such that with probability at least 1− c1e−N/c1 −
e−c2N , the following holds 2

B ≤ c3‖γ∗>bN/c1c‖
2
Λ>bN/c1c

+ c4‖γ∗≤bN/c1c‖
2λbN/c1c;

V ≤ c5 +
c6
N
.

In particular, as N →∞, we have
B → 0 and V ∈ O(1) w.h.p.

There is a constant C > 0 such that: for any N ∈ N

V = Ω(1).

Hence, limN→∞RN = Θ(1) and the minimum norm interpolant f̂ of a kernel with polynomial decay exhibits tempered
overfitting.

Proof Idea: The key insight is to use the upper bound on the condition number of the kernel matrix in Theorem 4.1
together with Theorem C.4 to bound the KRR test error. The asymptotic behaviours follow clearly from Theorems 4.1
and C.5 on lower bounding the test error using Assumption 3.3 and the effective rank in Definition 3.8.

2Recall the notation ‖v‖M =
√
v>Mv introduced in Assumption 3.6.

7
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We refer to Theorems A.8 and A.9 for the detailed formulation and proof. �

Although the two results in Theorem 4.2 are not new in the literature, we have provided a qualitatively better analysis:
1) the upper bound of the test error of Theorem 4.2 is a result we can recover from [Barzilai and Shamir, 2023, Theorem
2], but our probability is of exponential decay (in the form of 1− c1eN/c2) compared to their Markov type bound (in
the form 1− δ − c1eN/c2 , where setting δ → 0 would explode the upper bound); 2) the tempered overfitting behaviour
of kernel with polynomial decay, that is first reported in Mallinar et al. [2022], is based on Simon et al. [2021] which
used the Gaussian Design Assumption A.1. We replace this by the more general independent sub-Gaussian Design
Assumptions 3.2 and 3.3.

Another interesting observation is that adding more smaller eigenvalues to the spectrum does not harm this upper bound
more than a constant factor. Let K̃(x, x′) =

∑M+M ′

k=1 λkψk(x)ψk(x′)
def.
= K(x, x′) +K>M (x, x′) be the sum of our

original kernel K plus some smaller kernel K>M , with λk’s are still in decreasing order. Then we have

smax(K̃)

smin(K̃)
≤ smax(K) + smax(K>M )

smin(K) + smin(K>M )

≤
smax(K) +

∑
k>M λk

smin(K)

≤ c1
smax(K)

smin(K)
,

since the sum
∑
k>M λk .MλM < Nλ1 ≈ smax(K) in either decays. Hence the model size M in the Interpolation

Assumption 3.1 can be replaced by any number ≥ θN to have Theorem 4.2 valid.

However, if the kernel has exponential decay (Assumption 3.4), the upper bound in Theorem C.4 will become vacuous,
so one can show that the minimum norm interpolant suffers from catastrophic overfitting:
Theorem 4.3 (Catastrophic Overfitting for Exponential Decay). Suppose the Assumptions 3.1, 3.2, 3.3, 3.4, 3.6 hold.
Then with high probability, we have

V = Ω(N).

In particular, the minimum norm interpolant f̂ of a kernel with exponential decay exhibits catastrophic overfitting.

Proof Idea: It is a simple application of theorem C.5 where we plug in the exponential eigenvalues in the effective rank
ρk in Definition 3.8. We refer to Theorem A.10 for the detailed formulation and proof. �

Similarly, the catastrophic overfitting behaviour of kernel with exponential decay reported in Mallinar et al. [2022], is
based on Simon et al. [2021] which used the Gaussian Design Assumption A.1. We replace this with the more general
independent sub-Gaussian Design Assumptions 3.2 and 3.3.

4.3 Conjecture

Based on our observations, we know that the kernel spectrum determines the overfitting behaviour. But its converse
remains as an interesting open question: if a certain kernel exhibits benign tempered, or catastrophic overfitting, can we
conclude anything on the kernel spectrum?

We begin by a formal definition:
Definition 4.4. We say a decreasing sequence of positive numbers λk’s follows a:

(i) polynomial decay if there exists a number a > 1 such that λk = Θ(k−a);

(ii) sub-polynomial decay if λk = Ω(k−a) for any a > 1;

(iii) super-polynomial decay if λk = O(k−a) for any a > 1

Conjecture: Let K be a bounded continuous positive definite symmetric (PDS) kernel. Suppose the limit L of test
error in line (3) exists. Then the minimum norm interpolant f̂ of K follows a:

(i) catastrophic overfitting (L = ∞) if and only if K has super-polynomial spectral decay (for example,
exponential decay or some slower decay such as: λk � ep(k) where p(k) =

∑N
i=1 βi log(k)αi for some

N ∈ N+ and β1, . . . , βN , α1, . . . , αN ≥ 0.);
(ii) tempered overfitting (L = Θ(1)) if and only if K has polynomial spectral decay;

8



Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum A PREPRINT

(iii) benign overfitting (L = 0) if and only if K has sub-polynomial decay. (for example the logarithmic-linear
decay λk = Θ( 1

k log1+a k
) in Barzilai and Shamir [2023] or spiked spectrum/covariance in Johnstone [2001]).

Any proofs or counterexamples will have their own significance. Also, most naturally defined kernels have either
exponential or quadratic decay. Whether there exist other practical kernels with other decay rates is an interesting
question for future research.

5 Experiments

We run a simple experiment to validate our theoretical analysis on overfitting. For simplicity, we implement the
experiment by Assumption A.1. Let φk ∼ N (0,Λ) be i.i.d. Gaussian random vector with covariance Λ = diag{λk}
defined in Assumptions 3.4 or 3.5. Write Φ ∈ RM×N be a matrix with kth column φk. For each pairN andM = 10N ,
we run over 20 random samplings for the kernel matrix Φ>Φ.

Figure 3 confirms that the condition number of the kernel matrix grows as described in Theorem 4.1: with smax

smin
� λ1

λN

in the case of a polynomial spectrum and smax

smin
� Nλ1

λN
in the case of an exponential spectrum. To compute the test error,
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Figure 3: Validation of Theorem 4.1: The ratios smax

smin
: λ1

λN
for the polynomial spectrum (top) and smax

smin
: Nλ1

λN
for the

exponential spectrum (bottom) are asymptotically constant.

we randomly set the true coefficient γ∗ ∼ N (0, IM ) and let y = (γ∗)>φ+ ε be the label where ε ∼ N (0, 1) is the
noise. We evaluate the test error using the mean square error (MSE) between the true label and the ridgeless regression
on 1000 random points. For each pair N and M = 10N , we run over 20 iterations for the same true coefficient. In
Figure 4, we validate Theorems 4.2 and 4.3: the learning curve for polynomial decay is asymptotically bounded by
constants; while that for exponential decay increases as N →∞.
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Figure 4: Validation of Theorems 4.2 and 4.3: Learning curves for spectra with polynomial (top) and exponential
(bottom) decays.
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6 Discussion

In this section, we discuss the interpretations of our results and their possible extensions.

6.1 Implicit Regularization

Intuitively, given a (possibly infinite rank) PDS kernel K, one decomposes the kernel matrix into: K = K≤l + K>l

where the low-rank part K≤l fits the low-complexity target function while the high-rank part K>l ≈ (
∑
k>l λk)IN

serves as the implicit regularization. Hence the (normalized) effective rank ρl
def.
=

∑
k>l λl
Nλl+1

measures the relative strength
of the implicit regularization. Under the Exponential Decay Assumption 3.4, the effective rank ρl = Θ(N−1)� O(1)
is negligible, hence one can expect the catastrophic overfitting as the implicit regularization is not strong enough to
stop the interpolant using high-frequency eigenfunctions to fit the noise. Under the Polynomial Decay Assumption 3.4,
the effective rank ρl = Θ(1) shows that the interpolant would fit the white noise as if it is the target function, hence
overfitting is tempered; for even slower decay like logarithmic-linear decay λk = Θ( 1

k log2 k
) in Barzilai and Shamir

[2023], the effective rank ρl = Ω(log l), hence the high-frequency part is heavily regularized and benign overfitting
would occur. This intuition supports our conjecture.

6.2 Beyond Independent Features

Assumption 3.3 is employed in proving the lower bound of smin with exponential spectral decay in Lemma B.5 and
proving the lower bound of the test error in Theorem C.5. It is natural to assume that ψk’s are independent as it
represents the worst-case scenario for estimation: since ψ2, ψ3, ... contain no information about ψ1, one needs to argue
for some probabilistic bound for each k independently and take the union bound at the end. It is also theoretically
convenient to assume independence for decoupling cross terms. This will also be of theoretical interest to remove
Assumption 3.3 for obtaining lower bounds in future research.

6.3 Limitations

Our method works currently only on kernels with sub-Gaussian features. As mentioned in the introduction, we notice
that the concurrent work Barzilai and Shamir [2023] works on the same problem and their statement is valid for a
wider class of kernels. But our work is somewhat complementary to theirs, as our analysis can, for instance, explain
overfitting for the exponential decay case (while their bounds are vacuous in that case).

6.4 Future Research

There are several obvious possibilities to extend the results of this paper:

1. We hypothesize that different types of overfitting only depend on the spectrum. See Subsection 4.3.
2. One can attempt to remove Assumption 3.3 concerning the lower bounds of the test error and smin(K) with

exponential spectral decay.
3. Controlling the condition number of the kernel matrix can be of individual interest in terms of optimization.
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Appendix

A Proof for Gaussian case

For simplicity, for subsection A, we first prove our result with the following assumption instead of Assumption 3.2:
Assumption A.1 (Gaussian Design). We replace the entries in Ψ in the kernel matrix K = Ψ>ΛΨ by i.i.d. Gaussian
N (0, 1).

Essentially, the task is just linear regression with the feature vectors ψk(x)’s replaced by M -dimensional Gaussian
inputs φk

def.
= Λ1/2ψk ∼ N (0,Λ1/2) for all k.

In section B, we will extend our proof to sub-Gaussian case in a similar flavor.

A.1 Largest Singular Value

The approximation of the largest singular value smax(K) is well-studied, but for the sake of completeness, we will
prove the statement here fundamentally.
Lemma A.2 (Bound on largest singular value). Suppose Assumption A.1 holds. Suppose either decay assumptions 3.4
or 3.5 holds, there exists some constants c1, c2 > 0 such that, with a probability at least 1− 3δ, one has

Nλ1

(
1−

√
8

N
log

2

δ

)
≤ smax(K) ≤ Nλ1

(
1 +

√
c1
N

log
N

δ2

)
.

for N > c2 large enough.

Proof. We first bound smax from below. By definition of smax, take x = ψ1/ ‖ψ1‖2:

smax(K) = sup
x∈SN−1

M∑
k=1

λk(ψ>k x)2 ≥ sup
x∈SN−1

(λ1ψ
>
1 x)2 ≥ λ1(ψ>1 ψ1/ ‖ψ1‖2)2 = λ1 ‖ψ1‖22 .

Note that the random variable ‖ψ1‖22 ∼ χ2(N). Indeed, we can use Lemma C.9 to obtain a sharp bound: with
probability at least 1− δ,

smax(K) ≥ Nλ1
‖ψ1‖22
N

≥ Nλ1

(
1−

√
8

N
log

2

δ

)
.

Now we bound smax(K) from above. Consider the upper bound by triangle inequality:

smax(K) =

∥∥∥∥∥
M∑
k=1

λkψkψ
>
k

∥∥∥∥∥
op

≤

∥∥∥∥∥∥
blogNc∑
k=1

λkψkψ
>
k

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥
M∑

k=blogNc+1

λkψkψ
>
k

∥∥∥∥∥∥
op

. (6)

The first term in line (6) is ∥∥∥∥∥∥
blogNc∑
k=1

λkψkψ
>
k

∥∥∥∥∥∥
op

= sup
x∈SN−1

blogNc∑
k=1

λk(ψ>k x)2

≤ sup
x∈SN−1

blogNc∑
k=1

λ1(ψ>k x)2

= Nλ1

∥∥∥∥∥∥ 1

N

blogNc∑
k=1

ψkψ
>
k

∥∥∥∥∥∥
op

,

where the last line can be controlled by Theorem C.2: with probability at least 1− δ,∥∥∥∥∥∥ 1

N

blogNc∑
k=1

ψkψ
>
k

∥∥∥∥∥∥
op

≤

(
1 +

√
1

N
log

N

δ2

)2
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By Lemma C.9 and union bound, with probability

P

{
‖ψk‖22
N

− 1 <

√
8

N
log

2θN

δ
: ∀k = 1, ...,M

}
≥ 1−

M∑
k=1

δ

M
≥ 1− δ.

When this happens, we have the second term in line (6) upper bounded by:∥∥∥∥∥∥ 1

N

M∑
k=blogNc+1

λkψkψ
>
k

∥∥∥∥∥∥
op

≤
M∑

k=blogNc+1

λk

(
1 +

√
8

N
log

2θN

δ

)

≤

(
1 +

√
8

N
log

2θN

δ

)
M∑

k=blogNc+1

λk

≤


c2
N

(
1 +

√
8
N log 2θN

δ

)
, if the Exponential Decay Assumption 3.4 holds,

c2
(logN)a−1

(
1 +

√
8
N log 2θN

δ

)
, if the polynomial Decay Assumption 3.5 holds,

which is� Nλ1

√
1
N log N

δ2 for N large enough.

A.2 Smallest Singular Value

For the smallest singular value, we divide the cases into different decays. First, we suppose the Exponential Decay
Assumption 3.4 holds.
Lemma A.3 (Lower bound of smin for exponential spectral decay). Suppose Assumption A.1 and 3.4 hold. Then there
exists some constants c1 > 0 such that, with a probability of at least 1− δ, we have

smin(K) ≥ c1δ2λN .

Proof. By Lemma C.7 and C.8, for any k ≤ N and t ∈ (0,∞),

P
{
λN
λk

(ψ>k Nk)−2 ≥ t−1e− a2 (N−k)
}

= P

{
|ψ>k Nk| ≤

√
λN
λk

te
a
2 (N−k)

}

≤ 2√
2π
·
√
λN
λk

te
a
2 (N−k)

≤ 2√
2π
·

√
re−aN

re−ak
e
a
4 (N−k)

√
t

=
2√
2π
·
√
r

r
e−

a
4 (N−k)

√
t.

for all k = 1, ..., N . By the union bound, we have

P


λN
λk

(ψ>k Nk)−2 ≤ t−1e− a2 (N−k) : ∀k = 1, ..., N︸ ︷︷ ︸
E

 ≥ 1−
N∑
k=1

2√
2π
·
√
r

r
e−

a
4 (N−k)

√
t

≥ 1− 2√
2π
·
√
r

r
(1− e−a/4)−1

√
t.

When the event E happens, we have
N∑
k=1

λN
λk

(ψ>k Nk)−2 ≤
N∑
k=1

t−1e−
a
2 (N−k) ≤ (1− e−a/2)−1t−1,
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by Lemma C.7, with probability at least 1− 2√
2π
·
√

r
r (1− e−a/4)−1

√
t, we have

smin(K) ≥ λN (1− e−a/2)t

for any t > 0. Set δ = 2√
2π
·
√

r
r (1− e−a/4)−1

√
t and we obtain the claim.

For the polynomial decay, we first observe a simple fact:
Lemma A.4. If we write A = A1 + A2 ∈ RM×M into a sum of two matrices orthogonal to each other: A>1 A2 = 0,
then we have

inf
v∈SN−1

‖(A1 + A2)Ψv‖22 ≥ max

{
inf

v∈SN−1
‖A1Ψv‖22 , inf

v∈SN−1
‖A2Ψv‖22

}
.

Proof.

inf
v∈SN−1

‖(A1 + A2)Ψv‖22 = inf
v∈SN−1

{
‖A1Ψv‖22 + ‖A2Ψv‖22 + v>Ψ>A1A2Ψv

}
≥ inf
v∈SN−1

‖A1Ψv‖22 + inf
v∈SN−1

‖A2Ψv‖22 + inf
v∈SN−1

v>Ψ>A>1 A2Ψv

= inf
v∈SN−1

‖A1Ψv‖22 + inf
v∈SN−1

‖A2Ψv‖22

≥ max

{
inf

v∈SN−1
‖A1Ψv‖22 , inf

v∈SN−1
‖A2Ψv‖22

}
.

Using the above lemma, we have:
Lemma A.5 (Lower bound on smallest singular value for the polynomial decay). Suppose Assumptions A.1 and 3.5
hold. Suppose Assumption 3.1 holds with the constant θ = d1/δ0e for the δ0 in Proposition C.1. Then where there
exists some constants c1, c2 > 0 such that with a probability at least 1− e−c2N :

smin(K) ≥ c1NλN . (7)

Proof. We write Λ1/2 =

(
Λ

1/2
≤N 0

0 0

)
+

(
0 0

0 Λ
1/2
>N

)
, we can begin bounding the smallest singular value of K using:

smin(K) = inf
v∈SN−1

∥∥∥Λ1/2Ψv
∥∥∥2
2
≥ inf
v∈SN−1

∥∥∥∥∥
(

0 0

0 Λ
1/2
>N

)
Ψv

∥∥∥∥∥
2

2

= inf
v∈SN−1

∥∥∥Λ1/2
>NΨ̄v

∥∥∥2
2

where Ψ̄ ∈ R(M−N)×N is the submatrix of Ψ corresponding to the last (M −N) rows. Under the polynomial decay
assumption 3.5, the ratio between the largest and the smallest eigenvalues in Λ>M is bounded by some constant:
λN+1

λM
≤ rN−a

rM−a = r
r
(θN)a

Na = r
r θ
a, hence the above square norm is closed to some scaled random standard Gaussian

matrix: by Proposition C.1, there exists some absolute constant C1, C2 > 0 such that, with a probability of at most
e−C2N ,

inf
v∈SN−1

∥∥∥Λ1/2
>NΨ̄v

∥∥∥2
2
≤ λM

λN+1

λM
inf

v∈SN−1

∥∥Ψ̄v
∥∥2
2
≤ λM ·

r

r
θa · inf

v∈SN−1

∥∥Ψ̄v
∥∥2
2
≤ λM ·

r

r
θa · C1(M −N),

where we set n = M −N, k = N and θ = d1/δ0e (see the proposition for the definitions), and the constant C1 is as
stated in Proposition C.1. Then we have

λM ·
r

r
θa · C1(M −N) = λθN ·

r

r
θa · C1(θ − 1)N ≤ C1

r

r
(θ − 1)λNN

Set c1 = C1
r
r (θ − 1), c2 = C2 as in Proposition C.1 and we are done.

Note that discarding the first N rows is not pessimistic as it seems: the lower bound is sharp as it matches the upper
bound:

14



Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum A PREPRINT

Lemma A.6 (Upper bound on smallest singular value). With notation above, we have, with a probability of at least
1− δ:

smin(K) ≤

(
1 +

√
8 log

2(θ − 1)N

δ

)
M∑
k=N

λk.

In particular, there exists constants c1, c2 > 0 such that, with a probability of at least 1− 1/N :

• given that Assumption 3.4 (exponential decay) holds, we have smin(K) ≤ c1λN ,

• given that Assumption 3.5 (polynomial decay) holds, we have smin(K) ≤ c2NλN .

Proof. Fix the first N − 1 vectors ψ1, .., ψN−1 and pick v0 ∈ SN−1 orthogonal to them. Then

smin(K) = inf
v∈SN−1

M∑
k=1

λk(ψ>k v)2 ≤
M∑
k=1

λk(ψ>k v0)2 ≤
M∑
k=N

λk(ψ>k v0)2.

Since the Gaussian is rotational invariant, we have (ψ>k v0)2 ∼ χ2(1). By Lemma C.9, hence we have

P
{∣∣(ψ>k v0)2 − 1

∣∣ ≥ t} ≤ 2e−t
2/8.

Set t =
√

8 log 2(θ−1)N
δ and By the union bound, we have

P
{∣∣(ψ>k v0)2 − 1

∣∣ ≤ t : N ≤ k ≤M
}
≥ 1−

M∑
k=N

δ

(θ − 1)N
≥ 1− δ.

Thus with probability of at least 1− δ, we have

smin(K) ≤
M∑
k=N

λk(1 + t) =

(
1 +

√
8 log

2(θ − 1)N

δ

)
M∑
k=N

λk (8)

If the Exponential Decay Assumption 3.4 holds, we have

M∑
k=N

λk ≤ c1λN ;

if the polynomial Decay Assumption 3.5 holds, we have

M∑
k=N

λk ≤ c2NλN .

By setting δ = 1
N , the factor

(
1 +

√
8 log 2(θ−1)N

δ

)
becomes constant in line (8).

A.3 Condition Number and Test Error

Theorem A.7 (Bound on condition number of kernel matrix). Suppose Assumptions 3.1 and A.1 hold.

1. If, furthermore, the exponential decay assumption 3.4 holds, then there exists some constants c1, c2, c3 such
that, with probability at least 1− δ − c1/N , the condition number of the kernel matrix K is

c2
λ1
λN

N ≤ smax(K)

smin(K)
≤ c3
δ2

λ1
λN

N.

2. If, furthermore, the polynomial decay assumption 3.5 holds,then there exists some constants c1, c2, c3, c4 such
that with probability at least 1− c1/N − e−c2N , the condition number of the kernel matrix K is

c3
λ1
λN
≤ smax(K)

smin(K)
≤ c4

λ1
λN

.
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Proof. For exponential decay, from Lemma A.2, set δ = 1/N , there exists constants c1, c2, c3 such that with probability
of at least 1 − c2/N , c3Nλ1 ≤ smax ≤ c1Nλ1 ; from Lemma A.3, there exists a constant c4 with probability of at
least 1− δ, we have smin ≥ c4δ2λN . By the union bound, we can bound the condition number of the kernel matrix K
from above: with probability at least 1− δ − c2/N

smax(K)

smin(K)
≤ c1Nλ1
c4δ2λN

.

From Lemma A.6, there exists a constant c5 such that with probability of at least 1− 1/N ,e smin ≤ c5λN , hence By
the union bound, with probability of at least 1− (c2 + 1)/N ,

smax(K)

smin(K)
≥ c3Nλ1

c5λN
.

Combining the above results and renaming the constants, there exist constants c1, c2, c3 such that with probability at
least 1− δ − c1/N ,

c2
Nλ1
λN

≤ smax(K)

smin(K)
≤ c3
δ2
Nλ1
λN

.

For polynomial decay, from Lemma A.2, set δ = 1/N , there exists constants c1, c2, c3 such that with probability of at
least 1− c2/N , c3Nλ1 ≤ smax ≤ c1Nλ1 ; from Lemma A.5, there exists a constant c4, c5 with probability of at least
1− e−c4N , we have smin ≥ c5NλN . By the union bound, with probability at least 1− c2/N − e−c4N ,

smax(K)

smin(K)
≤ c1Nλ1
c5NλN

From Lemma A.6, with probability at least 1 − 1/N , we have smin ≤ c6λNN and hence, with probability at least
1− (c2 + 1)/N ,

smax(K)

smin(K)
≥ c3Nλ1
c6NλN

Combining the above results and renaming the constants, there exists constants c1, c2, c3, c4 such that with probability
at least 1− c1/N − e−c2N ,

c3
λ1
λN
≤ smax(K)

smin(K)
≤ c4

λ1
λN

.

Given that we have bounded the condition number of the kernel matrix, we can now bound the test error.
Theorem A.8. Suppose Assumptions 3.1, 3.5, 3.6 and A.1 hold. Then there exists some constants c1, c2, c3, c4, c5, c6
such that with probability at least 1− c1e−N/c1 − e−c2N , we have

B ≤ c3‖γ∗>bN/c1c‖
2
Λ>bN/c1c

+ c4‖γ∗≤bN/c1c‖
2λbN/c1c;

V ≤ c5 +
c6
N
.

Proof. By Theorem C.4, take l = bN/c1c. Since λ = 0, so sN (A−1l ) = s1(Al)
−1 and s1(A−1l ) = sN (Al)

−1. Hence
s1(A

−1
l )2

sN (A−1
l )2

= smax(Al)
2

smin(Al)2
. Since Al is just another kernel matrix with rank (M − l), by modifying Theorem A.7 w.r.t. the

right-shifted polynomial decay, with high probability, we have
smax(Al)

smin(Al)
.

λl+1

λl+N
.

l−a

(l +N)−a
= (1 +N/l)a ≤ (1 +N/(N/c))a = (1 + c)a,

and

Nλl+1s1(A−1l ) = Nλl+1sN (Al)
−1 . N

λl+1

Nλl+N
=

λl+1

λl+N
,

then we can bound the bias term using Theorem C.4:

B/c ≤ c1‖γ∗>l‖2Λ>l + ‖γ∗≤l‖2Λ−1
≤l

(
c2N

2λ2l+1

N2
+
λl+1

N

c3N
2λ2l+1

Nλl+N

)
≤ c1‖γ∗>l‖2Λ>l + c2‖γ∗≤l‖2Λ−1

≤l
λ2l

≤ c1‖γ∗>l‖2Λ>l + c2‖γ∗≤l‖2λl.
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Similarly, we can write the variance term into:

V/c ≤ c3
l

N
+

N

N2λ2l+N

∑
k>l

λ2k

≤ c3
l

N
+

c4
N2λ2l+N

∫ ∞
l

t−2adt

= c3
l

N
+

c4
N2λ2l+N

l−2a+1

= c3
l

N
+

c4
N2(l +N)−2a

l−2a+1

= c3 +
c4
N
,

since l = bN/c1c.

Theorem A.9. Suppose Assumptions 3.1, 3.5, 3.6 hold. Suppose Assumption A.1 holds or both Assumptions 3.2 and
3.3 hold. Then there exists constants C > 0 such that with probability at least 1− Ce−N/C ,

V = Ω(1).

Proof. We compute the (normalized) effective rank:

ρl
def.
=

1

Nλl+1

M∑
k=l+1

λk �
Nλl+1

Nλl+1
� 1

for all l = 1, ...,M − 1. Hence the condition (i) in Theorem C.5 would hold for some l = N/c1 where c1 > 1. Then
we apply Theorem C.5 for polynomial decay: there exists constants C,C ′, with a probability at least 1− Ce−N/C , we
have

V ≥ C ′
(
l

N
+
N
∑
k>l λ

2
k(∑

k>l λk
)2
)

= Ω

(
l

N
+
N
∫∞
l
t−2adt(∫∞

l
t−2a

)2
)

= Ω(1).

If the kernel has exponential decay (Assumption 3.4) instead, the upper bound in Theorem C.4 will become vacuous.
Instead, this upper bound is sharp in the sense that one can show the kernel with exponential decay suffers from
catastrophic overfitting:
Theorem A.10. Suppose Assumptions 3.1, 3.4, 3.6 hold. Suppose Assumption A.1 holds or both Assumptions 3.2 and
3.3 hold. Then there exists some constants c such that with probability at least 1− Ce−N/C , we have

V = Ω(N).

Proof. We compute the (normalized) effective rank:

ρl
def.
=

1

Nλl+1

M∑
k=l+1

λk �
λl+1

Nλl+1
� 1

N

for all l = 1, ...,M − 1. Hence the condition (i) or (ii) in Theorem C.5 would hold for some l < N . Then we apply
Theorem C.5 for exponential decay: there exists a constant C,C ′, with a probability at least 1− Ce−N/C , we have

V ≥ C ′
(
l

N
+
N
∑
k>l λ

2
k(∑

k>l λk
)2
)

= Ω

(
Ne−2al

e−2al

)
= Ω(N).

17
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B Proof for Sub-Gaussian case

In this section, we will prove the Theorem 4.1 on the condition number of K under Assumption 3.2. Note that the
remaining arguments in Theorem 4.2 and 4.3 follow.

Writing the kernel matrix as K = Ψ>ΛΨ, where the rows ψk are isotropic sub-Gaussian random vectors. Then the
control on the largest singular value directly follows from Theorem C.3:
Lemma B.1 (Upper bound on largest singular value). There exists constants c1, c2 depending only on the sub-Gaussian
norm of ψk, such that, with probability at least 1− 2e−c1N , we have

smax(K) ≤ c2Nλ1.

Proof. Set A = Λ1/2Ψ and t =
√
N in Theorem C.3, then with a probability at least 1− 2e−C3N , we have∥∥∥∥ 1

N
K−Λ

∥∥∥∥
op
≤ max{δ, δ2}λ1

where δ = C4

√
N
M +

√
N√
N

= C4√
θ

+ 1 is a constant, since θ = M
N is a constant by Assumption 3.1. Set c1 = C3 and

c2 = max{δ, δ2} to conclude the proof.

The lower bound on smax(K) follows a similar argument as in the Gaussian case in Lemma A.2, replacing the
concentration of chi-square by that of sub-exponential variables:
Lemma B.2 (Lower Bound on Largest Singular Value). There exists constants c1, c2 > 0, such that, with probability
at least 1− 2e−c1N , we have

smax(K) ≥ c2Nλ1.

Proof. By definition of smax, take x = ψ1/ ‖ψ1‖2:

smax(K) = sup
x∈SN−1

M∑
k=1

λk(ψ>k x)2 ≥ sup
x∈SN−1

(λ1ψ
>
1 x)2 ≥ λ1(ψ>1 ψ1/ ‖ψ1‖2)2 = λ1 ‖ψ1‖22 .

Note that the random variable ‖ψ1‖22 is sub-exponential with mean N and sub-exponential norm ≤ N√
2

as ψ1 is a
sub-Gaussian random vector. By Lemma C.9, set B to be the sub-exponential norm of ψk(x)2 and δ = 1

2 , with
probability at least 1− 2e−C5 min{ 1

4B2 ,
1

2B }N ,

smax(K) ≥ Nλ1
‖ψ1‖22
N

≥ Nλ1
(

1− 1

2

)
=

1

2
Nλ1.

Set c1 = C5 min{ 1
4B2 ,

1
2B } and c2 = 1

2 to conclude the proof.

Lemma B.3 (Upper bound on smallest singular value). There exists constants C5 > 0 such that, with a probability of
at least 1− δ:

smin(K) ≤ (1 + t)

M∑
k=N

λk,

where t = min

{√
B2C−15 log 2(θ−1)N

δ , BC−15 log 2(θ−1)N
δ

}
, B is the maximum sub-exponential norm of of the

centered variables ψk(x) − 1 and C5 is an absolute constant in Lemma C.9. In particular, there exists constants
c1, c2 > 0 such that, with a probability of at least 1− 1/N :

• given that Assumption 3.4 (exponential decay) holds, we have smin(K) ≤ c1λN ,

• given that Assumption 3.5 (polynomial decay) holds, we have smin(K) ≤ c2NλN .

Proof. Fix the first N − 1 vectors ψ1, .., ψN−1 and pick v0 ∈ SN−1 orthogonal to them. Then

smin(K) = inf
v∈SN−1

M∑
k=1

λk(ψ>k v)2 ≤
M∑
k=1

λk(ψ>k v0)2 ≤
M∑
k=N

λk(ψ>k v0)2.
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Since (ψ>k v0)2 is sub-exponential, By Lemma C.9, hence we have

P
{∣∣(ψ>k v0)2 − 1

∣∣ ≥ t} ≤ 2e−C5 min{ t2
B2 ,

t
B }.

Set t = min

{√
B2C−15 log 2(θ−1)N

δ , BC−15 log 2(θ−1)N
δ

}
and by union bound, we have

P
{∣∣(ψ>k v0)2 − 1

∣∣ ≤ t : N ≤ k ≤M
}
≥ 1−

M∑
k=N

δ

(θ − 1)N
≥ 1− δ.

Thus with probability of at least 1− δ, we have

smin(K) ≤
M∑
k=N

λk(1 + t) = (1 + t)

M∑
k=N

λk. (9)

If the Exponential Decay Assumption 3.4 holds, we have

M∑
k=N

λk ≤ c1λN ;

if the polynomial Decay Assumption 3.5 holds, we have

M∑
k=N

λk ≤ c2NλN .

By setting δ = 1
N , the factor (1 + t) in line (9) becomes constant.

Lemma B.4 (Lower bound of smallest singular value for polynomial spectrum). Suppose Assumption 3.5 holds. There
exists constants c1, c2 > 0 such that, with a probability of at least 1− 2e−c1N :

smin(K) ≥ c2λNN. (10)

Proof. We write Λ1/2 =

(
Λ

1/2
≤N 0

0 0

)
+

(
0 0

0 Λ
1/2
>N

)
, we can begin bounding the smallest singular value of K using:

smin(K) = inf
v∈SN−1

∥∥∥Λ1/2Ψv
∥∥∥2
2
≥ inf
v∈SN−1

∥∥∥∥∥
(

0 0

0 Λ
1/2
>N

)
Ψv

∥∥∥∥∥
2

2

= inf
v∈SN−1

∥∥∥Λ1/2
>NΨ̄v

∥∥∥2
2

where Ψ̄ ∈ R(M−N)×N is the submatrix of Ψ corresponding to the last (M −N) rows. Under the polynomial decay
assumption 3.5, the ratio between the largest and the smallest eigenvalues in Λ>M is bounded by some constant:
λN+1

λM
≤ rN−a

rM−a = r
r
(θN)a

Na = r
r θ
a, hence the above square norm is closed to some scaled random matrix with

independent sub-Gaussian column: by Theorem C.3, there exists some constants C3, C4 > 0 such that, with a
probability of at most 2e−C3N ,

inf
v∈SN−1

∥∥∥Λ1/2
>NΨ̄v

∥∥∥2
2
≤ λM

λN+1

λM
inf

v∈SN−1

∥∥Ψ̄v
∥∥2
2
≤ λM ·

r

r
θa· inf

v∈SN−1

∥∥Ψ̄v
∥∥2
2
≤ λM ·

r

r
θa·
(√

M −N −
√
C4N −

√
N
)2
,

where we set t =
√
N , and the constant C3, C4 is as stated in Theorem C.3. Then the term(√

M −N −
√
C4N −

√
N
)2

is smaller than or equal to c2N for some constant c2 > 0. Hence we have

λM ·
r

r
θa ·

(√
M −N −

√
C4N −

√
N
)2

= λθN ·
r

r
θa ·

(√
M −N −

√
C4N −

√
N
)2
≤ c2λNN.

Set c1 = C3 to conclude the proof.

or exponential decay, we have to assume independent sub-Gaussian features:
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Lemma B.5 (Lower bound of smallest singular value for exponential spectrum). Suppose Assumption 3.3 holds and
the eigenfunctions ψk’s are centered and let B def.

= maxk Ex
[
ψk(x)4

]
the maximum 4th moment of the eigenfunction

ψk. Then there exists some constants c1, c2 > 0 such that, with probability at least c1B−N ,

smin(K) ≥ c2λN .

Proof. First, we assume that each feature ψk is centered. Then for each k = 1, ..., N , write Nk = (ni)
N
i=1 ∈ RN , we

have

EX

[
(ψ>k Nk)2

]
= EX

 N∑
i,j=1

ninjψk(xi)ψk(xj)


= EX

[
N∑
i=1

n2iψk(xi)
2

]
+ EX

∑
i 6=j

ninjψk(xi)ψk(xj)


= EX

[
N∑
i=1

n2iψk(xi)
2

]
+
∑
i6=j

E
[
ninjψk(xi)Exj [ψk(xj)]

]
= EX

[
N∑
i=1

n2iψk(xi)
2

]

=

N∑
i=1

Exj :j 6=i
[
n2i
]
Exi

[
ψk(xi)

2
]

= Exj :j 6=i

[
N∑
i=1

n2i

]
= 1.

Let B def.
= maxk Ex

[
ψk(x)4

]
the 4th moment of the eigenfunction ψk. Then we can compute:

EX

[
(ψ>k Nk)4

]
=
∑
i,j

EX

[
n2in

2
jψk(xi)

2ψk(xj)
2
]

=
∑
i,j

EX

[
n2in

2
j

]
EX

[
ψk(xi)

2ψk(xj)
2
]

≤ max
i

{
E
[
ψk(xi)

2
]2
,E
[
ψk(xi)

4
]}∑

i,j

EX

[
n2in

2
j

]
= BEX

[
‖NkN

>
k ‖2F

]
= BEX

[
Tr[(NkN

>
k )2]

]
= BEX

[
Tr[(NkN

>
k )]
]

= BEX

[
N>k Nk

]
= BEX [1] = B,

since B = maxk Ex
[
ψk(x)4

]
≥ maxk Ex

[
ψk(x)2

]2
= 1. By Paley-Zygmund inequality,

P
{

(ψ>k Nk)2 ≥ tE
[
(ψ>k Nk)2

]}
≥ (1− t)2

E
[
(ψ>k Nk)2

]2
E
[
(ψ>k Nk)4

]
P
{

(ψ>k Nk)2 ≥ t
}
≥ (1− t)2/B.
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Set t = e−
a
2 (N−k+1) and we have

P

(ψ>k Nk)2 ≥ e− a2 (N−k+1) : ∀k = 1, ..., N︸ ︷︷ ︸
E

 ≥
N∏
k=1

(
1− e− a2 (N−k+1)

)2
/B

= B−N

(
N∏
k=1

(
1− e− a2 (N−k+1)

))2

≥ B−N
(

1−
N∑
k=1

e−
a
2 (N−k+1)

)2

= c1B
−N

for some constant c1 > 0 depending only on a. When this event E happens, we have

N∑
k=1

λN
λk

(ψ>k Nk)−2 ≤
N∑
k=1

λN
λk

e
a
2 (N−k+1) .

N∑
k=1

e−
a
2 (N−k).

Hence there exists some constant c2 > 0 such that 1∑N
k=1

λN
λk

(ψ>k Nk)−2
≥ c2. By Lemma C.7, we have

smin(K) ≥ c2λN .

Remark B.6. The first observation is that the probability decays exponentially with respect to N when the maximum
fourth moment B > 1. If additional assumptions are introduced, such as anticoncentration:

P
{

(ψ>k Nk)2 ≤ t
}
≤ c1t

where c1 > 0 is a constant, one can readily argue as in Lemma A.3 to obtain a much better probability. Specifically,
applying an anticoncentration result for (ψ>k Nk)2 to Lemma C.7 suffices. However, for the sake of generality, we
retain Lemma B.5 with minimal assumptions and exponential decaying probability.

Remark B.7. Assumption 3.3 is purely technical. We conducted an experiment using cosine features ψk = cos(k·)
(which are dependent on each other) on random points on a circle and empirically computed the term (ψ>k Nk)2. Refer
to Figure 5 for the results.

We end Section B here as the above Lemmata suffice to prove the sub-Gaussian version of Theorem A.7 with respective
probability. The remaining two Theorems 4.2 and 4.3 follow in a similar flavor as in the Gaussian case.

C Technical Lemmata

This section contains known results from previous work that we use for our main theorems.
Proposition C.1 (Proposition 2.5 in Rudelson and Vershynin [2008]). Let G be a n × k matrix whose entries are
independent centered random variables with variances at least 1 and fourth moments bounded by B. Let K ≥ 1. Then
there exist C1, C2 > 0 and δ0 ∈ (0, 1) that depend only on B and K such that if k < δ0n then

P
{

inf
v∈Sk−1

‖Gv‖2 ≤ C1n
1/2, ‖G‖op ≤ Kn

1/2

}
≤ e−C2n.

If the random variable is sub-Gaussian, the condition on the operator norm ‖G‖op ≤ Kn1/2 can be dropped.

Theorem C.2 (Corollary 5.35 in Vershynin [2010]). Let A be an N ×n matrix whose entries are independent standard
normal random variables. Then for every t ≥ 0, with probability at least 1− exp

(
−t2/2

)
, we have

√
N −

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ t.

Theorem C.3 (Theorem 5.39 and Remark 5.40 in Vershynin [2010]). Let A be an N × n matrix with independent
rows Ai of sub-Gaussian random vector with covariance Σ

def.
= E

[
AiAi

>
]
∈ Rn×n. Then there exists constants
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Figure 5: Empirical distribution of the dot-product square (ψ>k Nk)2, where the feature vectors ψk = (cos(kxi))
N
i=1

represent cosines evaluated on the training set {xi}Ni=1, and Nk is a unit normal vector of the hyperplane spanned by ψl
’s for l 6= k. We observe a heavy-tailed distribution for each frequency k, indicating the anti-concentration property of
(ψ>k Nk)2 in a dependent-feature setting.

C3, C4 > 0 (depending only on the sub-Gaussian norm of entries of A), such that for any t ≥ 0, with probability at
least 1− 2e−C3t

2

, we have ∥∥∥∥ 1

N
A>A−Σ

∥∥∥∥
op
≤ max{δ, δ2} ‖Σ‖op .

where δ = C4

√
n
N + t

N . In particular, if Σ = In, we have
√
N −

√
C4n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
C4n+ t.

Theorem C.4 (Theorem 2.5 in Tsigler and Bartlett [2023]). Suppose Assumption 3.2 holds. Let Al = λIN +∑M
k=l+1 λkψkψ

>
k ∈ RN×N . Then there exists a constant c > 0, such that for any l < N/c, with probability of at least

1− ce−N/c, if Al is positive definite, then

B/c ≤ ‖γ∗>l‖2Λ>l

(
1 +

s1(A−1l )2

sN (A−1l )2
+Nλl+1s1(A−1l )

)
+ ‖γ∗≤l‖2Λ−1

≤l

(
1

N2sN (A−1l )2
+
λl+1

N

s1(A−1l )

sN (A−1l )2

)
V/c ≤

s1(A−1l )2

sN (A−1l )2
l

N
+Ns1(A−1l )2

∑
k>l

λ2k.

where γ∗ = γ∗≤l ⊕ γ∗>l is the splitting of the target function coefficient; and ‖v‖M
def.
=
√

v>Mv for any vector v and
matrix M with appropriate dimension.
Theorem C.5 (Lemma 7 and Theorem 10 in Tsigler and Bartlett [2023]). Suppose Assumptions 3.2 and 3.3 holds. In
addition, fix constants A > 0, B > 1

N and suppose either (i) the (normalized) effective rank ρl
def.
= 1

Nλl+1

∑M
k=l+1 λk ∈

(A,B); or (ii) l = min{` : ρ` > B}. Then there exists a constant C,C ′, such that if l < N/C, with a probability at
least 1− Ce−N/C , we have

V ≥ C ′
(
l

N
+
N
∑
k>l λ

2
k(∑

k>l λk
)2
)
.

Lemma C.6 (Negative second moment identity, Exercise 2.7.3 in Tao [2012]). Let M be an invertible n×n matrix, let
R1, ...,Rn be the rows of M and let C1, ...,Cn be the columns of M−1. For each 1 ≤ i ≤ n, let Ni be a unit normal
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vector orthogonal to the subspace spanned by the all rows R1, ...,Rn except Ri. Then we have

‖Ci‖22 = (R>i Ni)
−2 and

n∑
i=1

si(M)−2 =

n∑
i=1

(R>i Ni)
−2.

Proof. Note that R>i Cj = δij and the rows Ri’s spans the space RN . Hence we have Ci = ±‖Ci‖2 Ni for all i and
‖Ci‖22 = (R>i Ci/R

>
i Ni)

2 = (R>i Ni)
−2 which proves the first statement. For the second statement, note that

n∑
i=1

λi(M)−2 =

n∑
i=1

λi(M
−1)2 = Tr[(M−1)>(M−1)] =

n∑
i=1

‖Ci‖22 =

n∑
i=1

(R>i Ni)
−2.

Lemma C.7 (lower bound of smin). KN =
∑N
k=1 λkψkψ

>
k ≺ K. Let ΛN = diag(λk)Nk=1 ∈ RN×N and ΨN =

(ψk)Nk=1 ∈ RN×N and set M = Λ
1/2
N ΨN which is invertible almost surely. Note that KN = M>M. Let R1, ...,Rn

be the rows of M and let C1, ...,Cn be the columns of M−1. For each 1 ≤ i ≤ n, let Ni be a unit normal vector
orthogonal to the subspace spanned by the all rows R1, ...,Rn except Ri. we have

smin(K) ≥ λN∑N
k=1

λN
λk

(ψ>k Nk)−2
.

Proof. Since smin ≥ sN (KN ), WLOG: assume M = N . Then by Lemma C.6,

sN (KN )−1 ≤
N∑
k=1

sk(KN )−1 =

N∑
k=1

sk(M)−2 =

N∑
k=1

(√
λkψ

>
k Nk

)−2
,

where Nk denote a unit normal vector orthogonal to the subspace spanned by the all rows R1, ...,Rn of M except Ri.
Hence

smin ≥ sN (KN ) ≥ λN∑N
k=1

λN
λk

(ψ>k Nk)−2
. (11)

Lemma C.8 (Anti-Concentration Result For Gaussian Laws). Let g be a standard Gaussian variable, then

P {|g| ≤ t} ≤ 2t√
2π
, ∀t ≥ 0. (12)

Lemma C.9 (Sub-Exponential Deviation, see Corollary 5.17 in Vershynin [2010]). Let N ∈ N. Let X1, ..., XN be
independent centered random variables with sub-exponential norms bounded by B. Then for any δ > 0,

P

{
|
N∑
i=1

Xi| > δN

}
≤ 2 exp

(
−C5 min

{
δ2

B2
,
δ

B

}
N

)
,

where C5 > 0 is an absolute constant.

In particular, if X ∼ χ(N) is the Chi-square distribution, then P
{
|XN − 1| > t

}
≤ 2e−Nt

2/8, ∀t ∈ (0, 1).

Theorem C.10 (Theorem 1.1 in Rudelson and Vershynin [2009] /Theorem 5.38 in Vershynin [2010]). Let A be an
N × n random matrix whose entries are i.i.d. sub-Gaussian random variables with zero mean and unit variance. Then
there exists constants C6 > 0, C7 ∈ (0, 1) such that for any δ > 0,

P
{
smin(A) ≤ δ(

√
N −

√
n− 1)

}
≤ (C6δ)

N−n+1 + CN7 .

In particular, if N = n, we have
smin(A) & N−1/2

with high probability.
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